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Abstract—This paper introduces and validates the Aquarius
scatterometer-only wind speed algorithm and the combined active
passive (CAP) wind speed products. The scatterometer-only algo-
rithm uses the co-polarized radar cross-section to determine the
ocean surface wind speed with a maximum-likelihood estimator
approach while the CAP algorithm uses both the scatterometer
and radiometer channels to achieve a simultaneous ocean vector
wind and sea surface salinity retrieval. We discuss complications
in the speed retrieval due to the shape of the scatterometer model
function at L-band and develop mitigation strategies. We find
the performance of the Aquarius scatterometer-only wind speed
is better than 1.00 ms−1, with best performance for low wind
speeds and increasing noise levels as the wind speed increases.
The CAP wind speed product is significantly better than the
scatterometer-only due to the inclusion of passive measurements
and achieves 0.70 ms−1 root-mean-square error.

Index Terms—Aquarius, ocean winds, radar, remote sensing,
scatterometery.

I. INTRODUCTION

AQUARIUS is a combined L-band scatterometer and ra-
diometer designed to map the sea surface salinity (SSS)

from low Earth orbit [1], [2]. It is flown on (SAC)-D which
is a joint mission between the U.S. (National Aeronautics and
Space Administration) and Argentina (Comisión Nacional de
Actividades Espaciales). The salinity signal is detected in the
radiometer due to small changes in the sea surface emissivity
[3]–[5]. The effects of salinity on the surface emissivity are on
the same order of magnitude as those due to surface roughness,
thus accurate estimation of the surface roughness is vital to mis-
sion success. Aquarius was designed with a combined L-band
scatterometer and radiometer that provide collocated roughness
estimates with the radiometer brightness temperatures (TB).
The collocated scatterometer provides the estimate of surface
roughness via the normalized radar cross-section (σ0) required
to isolate the salinity signal in the radiometer. The Aquarius
error budget for surface roughness correction is 0.28 K [6]
and recent airborne results suggest that TB changes by about
0.33–0.34 K per ms−1 [7]. To meet the error requirement for
the radiometer roughness correction, the scatterometer must
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provide an estimate of ocean surface wind speed with less than
1 ms−1 error.

The Aquarius scatterometer was designed to meet these
needs by providing an observation of the ocean surface rough-
ness at L-band [8]. The radiometer and scatterometer share
the same antenna and have an interleaved sampling in time,
thus are collocated spatially and temporally. The primary cause
of ocean surface roughness is wind speed, with wave-height
being a secondary effect. There is a rich heritage of Ku-
band (SeaSat [9], NASA Scatterometer [10], QuikSCAT [11],
and SCAT on OceanSAT-2 [12], [13]) and C-band (European
Remote Sensing Satellite-1/2 [14] and Advanced Scatterometer
[15]) scatterometer and model function development. However,
Aquarius is the first space-borne L-band scatterometer designed
to observe the ocean surface roughness. In this paper, we show
that L-band provides a very capable system for retrieval of
ocean surface wind speed. This is a timely observation since the
upcoming Soil Moisture Active-Passive (SMAP) mission will
also have a conically scanning active/passive L-band system
and the capability of SMAP over the ocean is of interest to the
ocean community.

In Section II we introduce the data sets considered in this
study and in Section III we discuss the spatial and temporal
collocation of the data considered. Next we give an overview of
the model function for the scatterometer at L-band in Section IV
and discuss the scatterometer-only (SCAT) and combined ac-
tive passive (CAP) algorithms in Section V. Finally, we perform
quantiative comparisons of the wind products in Section VI.
We show that the SCAT product has root-mean-square (RMS)
errors comparable to previous scatterometers and that the CAP
performance is significantly better. We demonstrate that an
L-band active/passive system provides good performance for
ocean wind speed retrieval.

II. DATASETS

We do not directly consider buoy validations due to the
huge disparity in spatial sampling—the Aquarius scatterometer
observes ocean surface roughness at the 100-km length scale,
while the buoy observes the ocean at meter length scales.
Instead we use Special Sensor Microwave Imager/Sounder
(SSMI/S) as the primary reference wind speed product. Re-
cent work [16], [17] on SSMI/S wind retrievals has ensured
SSMI/S gives an intercalibrated wind product with buoys and
the recently released QuikSCAT Version 3 data [11]. Thus by
validating with SSMI/S we ensure consistency between passive
imaging radiometers (SSMI/S and WindSAT), QuikSCAT Ver-
sion 3, and buoys.
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A. Aquarius Data

The Aquarius Level 2 (L2) data considered in this pa-
per is version 2.0, available from the Physical Oceanography
Distributed Active Archive Center at JPL. Aquarius has one
scatterometer, which switches between three different push-
broom antenna feeds at incidence angles of 29.4◦, 38.5◦, and
46.3◦. Every 1.44 s, the scatterometer acquires 8 observations
of the HH, HV, VH, and VV σ0, and these 8 observations
are averaged into one level 2 data block. The antenna beam
footprints from each data block overlap so that every fourth
block has an approximately non-overlapping footprint, however
for this analysis we consider each 1.44 s data block as a separate
data point.

B. SSMI/S Data

We use the SSMI/S instrument aboard Defense Meteorolog-
ical Satellite Program F17 satellite. SSMI/S is a four-frequency
radiometer which takes dual-polarization measurements
at 19.35, 37.0, and 85.5 GHz and vertical polarization mea-
surements at 22.235 GHz [18]. We use version 7 daily SSMI/S
F17 data available from www.ssmi.com.1 The SSMI/S daily
data come on a 0.25◦ × 0.25◦ grid with retrievals of wind
speed, rain-rate, water-vapor, cloud liquid water, and time
information.

C. ECMWF Data

Spatially and temporally interpolated European Centre for
Medium-Range Weather Forecasts (EMCWF) operational wind
data was generated for each Aquarius L2 footprint.

III. COLLOCATION OF AQUARIUS AND SSMI/S

We constructed a global collocated data set of Aquarius and
SSMI/S where every SSMI/S data point within 28 km in space
and 1 h in time of the Aquarius footprint is averaged into one
collocation data point. We require that scatterometer quality
flag bits 31, 29, 21, and 20 are not set, indicating lack of severe
RFI and no pointing errors. In addition we only consider land
and ice-free data that is within ±50◦ latitude to remove residual
ice contamination.

We obtain slightly more than 15 million collocated data
points where we have ECMWF, SSMI/S, and Aquarius. In
Fig. 1 we plot a map of the percentage of Aquarius data
points that have a rain-free SSMI/S matchup. We see that the
majority of Aquarius data have a matchup with SSMI/S, with a
noticeable reduction in the tropics due to rain.

IV. MODEL FUNCTION

With its global L-band observations of the ocean, Aquar-
ius has provided great insight into the radar model function.
Previous estimates of the L-band model function were based
on synthetic aperture radar (SAR) L-band data [19] or aircraft

1SSMI/S data are produced by Remote Sensing Systems and sponsored by
the NASA Earth Science MEaSUREs DISCOVER Project. Data are available
at www.remss.com.

Fig. 1. Percent of Aquarius data for which there is a rain-free SSMI/S
matchup.

campaigns [7]. However, both of these have limitations, SAR
instruments observe the ocean surface at far different spatial
scales than Aquarius and the aircraft observations have large
variation in incidence angle within the antenna beam footprint.

We use a new L-band passive and active geophysical model
function for ocean surface wind derived from Aquarius data
[20]. In Fig. 2 we show contour plots of the Aquarius scatterom-
eter model function for HH and VV (left to right) polarization in
the top row for beam 1. In the middle and bottom rows we plot
the same for beams 2 and 3, respectively. Notice that both HH
and VV polarizations show far less sensitivity to the wind speed
for cross-wind (±90◦) relative azimuth angles as compared to
upwind/downwind relative azimuth angles (0 ± 180). This is
due to the relatively large amount of azimuthal modulation for
HH and VV. VV polarization, in particular, is not monotonic
in the speed dimension for cross-wind values of the relative
azimuth angle. The non-monotonicity of the model function in
speed is clearly indicated by the closed contour on beam 2 VV
polarization (second column, second row in Fig. 2).

V. AQUARIUS WIND SPEED RETRIEVAL ALGORITHMS

In this section we discuss the algorithms used to retrieve the
wind speed for the scatterometer-only algorithm and the CAP
algorithm. Both algorithms perform a point-wise retrieval for
every 1.44 s Aquarius data block.

A. Aquarius Scatterometer-Only Wind Speed

Due to the push-broom sampling of Aquarius, we have one
azimuthal look with three polarizations (HH, HV, and VV)
for a given spot on the ocean, however, the cross-polarization
channel is not usable for non-extreme wind speeds due to
the low signal-to-noise ratio. With only one azimuthal look,
we cannot perform a wind vector retrieval, however, we may
retrieve a wind speed if a wind direction is assumed. We use
the National Centers for Environmental Prediction (NCEP)
wind direction to constrain the problem, then perform a 1-D
search for the best wind speed, given that wind direction and
scatterometer observations. Similar to QuikSCAT, we use a
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Fig. 2. Aquarius model function contour plots. In the top row we show the beam 1 HH and VV model functions from left to right. In the middle and bottom we
show the same for beams 2 and 3, respectively.

maximum likelihood estimator to find the best wind speed given
that wind direction, using the following cost function:

J = −

(
σHH
0,obs − σHH

0,m

)2

(
kpHHσHH

0,obs

)2 −

(
σV V
0,obs − σV V

0,m

)2

(
kpV V σV V

0,obs

)2 (1)

where σHH
0,obs, σV V

0,obs are the observed top-of-atmosphere (TOA)
σ0 for HH and VV polarization, σHH

0,m , σV V
0,m are the model

σ0 for HH and VV polarization, and kpHH , kpV V are the
estimated relative uncertainties of the observed σ0 for HH and
VV polarization. This formulation of the cost function uses
both the HH and VV scatterometer observations, weighted by



FORE et al.: AQUARIUS WIND SPEED PRODUCTS: ALGORITHMS AND VALIDATION 2923

the estimated uncertainly of these observations. While a total
power approach would be technically invariant to the effects
of Faraday rotation, the effects on the co-polarization channels
are very small at L-band over ocean due to very small cross-
polarizaton return relative to the co-polarization return.

Large azimuthal modulation of σ0 at L-band causes par-
ticular relative azimuth angles to be either very flat or be
non-monotonic functions of speed. The flatness and non-
monotonicity of the model function shown in Fig. 2 introduces
significant complications in the wind speed retrieval and we
must allow for the possibility of multiple local maxima of
the objective function so that we may select the best wind
speed solution from these multiple local maxima. To find all
the local maxima we seed the speed search at multiple initial
speeds and use a line search method to find the local maxima
of the objective function [21]. If multiple local maxima of the
objective function in speed are found, the solution with the
nearest speed to the NCEP speed is reported in the L2 data.

B. Combined Active/Passive Algorithm

The CAP algorithm is a unified sea surface salinity (SSS)
and wind vector retrieval algorithm using both scatterometer
and radiometer measurements [22]. The CAP cost function is

JCAP = − (Iobs − Im)2
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−
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√
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where I := TH
B + TV

B is the first Stokes parameter, Q := TV
B −

TH
B is the second Stokes parameter, U is the third Stokes

parameter, ΔI = ΔU = 0.14 K, φ is the wind direction, φN

is the NCEP wind direction, w is the wind speed, wN is
the NCEP wind speed, and Δw = 1.5 m/s. Note that Im and
Qm are functions of wind speed, relative wind direction, and
SSS, whereas σH

0,mH and σV
0,mV are only functions of wind

speed and relative wind direction. This particular formulation
exploits the fact that I and

√
Q2 + U2 are invariant to Faraday

rotation [23]. The σ0 are not invariant to Faraday rotation,
however the effects on the co-polarization σ0 channels are
very small. The last two terms in (2) are weak constraints, the
sin2[0.5(φ− φN )] term primarily constrains the wind direction
solution at low to moderate wind speeds where there is little
sensitivity to wind direction. The last term improves high-wind
speed performance at cross-wind relative azimuth angles.

We seed the maximum likelihood search at the ancillary SSS,
NCEP wind speed, and a range of wind directions. Then we use
a conjugate-gradient method to find the local maxima of the ob-
jective function in speed, direction, SSS space. Typically more
than one local maxima is found and we report the ambiguity
with the nearest wind direction to NCEP as the solution.

Fig. 3. Distributions of wind speed for (a) SCAT and (b) CAP (solid black
line), ECMWF (dashed black line) and SSMI/S (gray line). All data are rain-
free according to SSMI/S.

VI. COMPARISONS OF AQUARIUS WIND SPEED

PRODUCTS AND SSMI/S WIND SPEED

In Fig. 3(a) we plot histograms of SCAT and CAP (3(b))
wind speed products, SSMI/S wind speed, and ECMWF wind
speed for the global collocated data set. We compute the mean
and STD for each of the four wind speeds in Table I and
we note that all three wind speeds have similar means and
standard deviations. In Fig. 4 we show the joint distributions
(log-histogram) of the two wind speed products and SSMI/S
wind speeds as well as the 1 : 1 line. We can clearly see some
overestimation of the wind speed when SSMI/S wind speed is
near 10 ms−1, present in both the SCAT and CAP retrievals.
This overestimation is due to the flatness of the model function
in the speed direction for cross-wind relative azimuth angles,
which is most significant near 10 ms−1, as shown in Fig. 2.
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TABLE I
AQUARIUS–SSMI/S–ECMWF GLOBAL COLLOCATION

WIND SPEED MEAN AND STD

Fig. 4. Two-dimensional histogram of collocated (a) Aquarius SCAT and
SSMI/S wind speeds, and (b) CAP and SSMI/S wind speeds. Contours of the
log-counts are shown as well as the 1 : 1 line.

A. Point Comparisons

In Fig. 5(a) we plot the conditional mean and standard
deviation (STD) of the Aquarius wind speed minus the SSMI/S
wind speed. We see that for low wind speeds (< 5 m/s) the
STD is less than 1 m/s, for 5–17 m/s the STD is between
1 and 2 m/s and for high wind speeds the STD is larger than

Fig. 5. (a) Conditional SCAT–SSMI/S speed mean difference and standard
deviation (STD) versus SSMI/S wind speed. (b) Conditional CAP–SSMI/S
speed mean difference and standard deviation (STD) versus SSMI/S wind
speed. The mean difference is plotted with square markers and the STD is
plotted with diamond markers. The overall speed mean difference is 0.015 m/s
and the overall STD is 1.162 m/s for SCAT wind product and for CAP wind
product we find 0.091 m/s mean difference and 1.006 m/s STD difference.

2 m/s. The overall speed bias is very small, 0.015 ms−1 and
the overall speed STD is 1.162 ms−1. In Fig. 5(b) we plot
the same for the CAP wind speed product and the overall
bias of the CAP product is 0.091 ms−1 and the overall CAP
speed STD is 1.006 ms−1. We see that the CAP speed STD
is improved as compared to the scatterometer-only wind speed
across the SSMI/S speed range and much improved at wind
speeds larger than 17.5 m/s. The improvement in the CAP
wind speed performance at higher wind speeds is due to the
inclusion of the radiometer measurements. At high wind speeds
the scatterometer-only performance is degraded at crosswind
relative azimuth angles due to the nearly flat curve of σ0 versus
wind speed.
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TABLE II
SCAT TRIPLE-COLLOCATION RESULTS

B. Triple Collocation

Following [24]–[26] we perform a triple-collocation analysis
of the Aquarius SCAT/ECMWF/SSMI/S and CAP/ECMWF/
SSMI/S data sets. We assume the following error model for
each of the three wind data sets:

wi
A =αA + βAW

i + riA

wi
E =αE + βEW

i + riE

wi
S =αS + βSW

i + riS (3)

where the subscripts A, E, S correspond to Aquarius, ECMWF
and SSMI/S, respectively, α is the bias of each, β is the scale
error for each, and ri is the RMS error associated with each
for true wind wi. We assume that the RMS errors are zero-
mean, i.e., 〈riA〉 = 〈riE〉 = 〈riS〉 = 0, and that the errors are not
correlated, i.e., 〈riAriE〉 = 〈riAriS〉 = 〈riEriS〉 = 0, where angle
brackets indicate averaging. To solve these equations, we must
choose one wind product to have zero bias and unity slope, in
this analysis we choose SSMI/S. Then we introduce
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A =wi
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〉
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We find βA = 〈w∗,i
A w∗,i

E 〉/〈w∗,i
E w∗,i

S 〉 and βE = 〈w∗,i
A w∗,i

E 〉/
〈w∗,i

A w∗,i
S 〉. Next we write

ŵi
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A /βA = W i + r̂iA

ŵi
E =w∗,i

E /βE = W i + r̂iE

ŵi
S =w∗,i
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where r̂iA = riA/βA, r̂iE = riE/βN , and r̂iS = riS/βS . Then by
averaging the three cross-products of {ŵi

A, ŵ
i
E , ŵ

i
S} we may

solve for the bias, slope, and RMS errors of each. In Table II we
show the results of the triple-collocation analysis for the SCAT
wind product and in Table III the same for the CAP product. We
have also performed a triple-collocation analysis using Aquar-
ius SCAT/QuikSCAT/SSMI/S and CAP/QuikSCAT/SSMI/S to
alleviate concerns of correlations between the three data sets.

TABLE III
CAP TRIPLE-COLLOCATION RESULTS

We collocated all land/ice/rain free QuikSCAT observations
that were within 25 km and 60 min of the Aquarius footprint,
in a similar was as with SSMI/S. These results are included
in Tables II and III, and give fairly consistent results to the
Aquarius/SSMI/S/ECMWF analysis. Compared to QuikSCAT,
we find that the Aquarius SCAT product is slightly worse by
about 0.03 ms−1 and the CAP product is significantly better
than that from QuikSCAT, by 0.24 ms−1.

These two analysis show that ECMWF has an RMS error
around 0.83 to 0.85 ms−1, SSMI/S has an RMS error around
0.63 to 0.71 ms−1, and QuikSCAT has an RMS error around
0.95 ms−1. The SCAT product is found to have an RMS error
of 0.94 to 0.98 ms−1 and the CAP product is found to have
and RMS error of 0.70 ms−1. While all the results from the
various analysis are not the same, they are all in reasonable
agreement with each other. These results give the partition
of the error between SSMI/S and the SCAT/CAP wind speed
product shown in 5.

VII. SUMMARY

We have undertaken a comprehensive comparison of Aquar-
ius scatterometer-only wind speed retrievals to SSMI/S. We find
that the SCAT product gives speed retrievals with very small
bias up to 20 ms−1, and has RMS errors of less than 1 ms−1.
This performance is comparable with QuikSCAT [11], SCAT
on OceanSAT-2, and Advanced Scatterometer [25]). The STD
increases with increasing wind speed due to the large azimuthal
modulation in the model function for the co-polarization chan-
nels. This gives regions of relative azimuth angles where the
model function is fairly “flat” in the speed dimension. When
the passive brightness temperatures are used as well in the
CAP product, the high wind speed performance is significantly
better and we achieve RMS errors of 0.70 ms−1. The radiometer
model function does not display the same flatness at crosswind
as the scatterometer model function, and this is the main reason
for the better performance of the CAP wind speed product
as compared to the SCAT product. Finally, the inclusion of a
cross-polarization channel with good SNR would significantly
improve the active-only products since it does not display the
same flatness as the co-polarization channels. Aquarius has
proven that an L-band active/passive system can give good
wind speed retrievals, and we expect that SMAP will make a
significantly better system for ocean vector winds due to the
additional azimuth look and increased swath width.
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